

Deposit Subscription - Predictive Modeling -

BY: MAI HAN TRAN

AGENDA OF ITEMS

BUSINESS GOAL

DATA QUALITY
ASSESSMENT

DATA
EXPLORATION

METHODOLOGY

MODEL SELECTION

BUSINESS GOAL:

- A banking institution decided to pursue a direct marketing campaign to increase number of deposit subscriptions.
- A prediction model via Python was developed to help the bank identify most potential subscribers to enhance campaign success and best leverage its budget.
- *About the dataset*: The dataset was called “Bank Marketing Data”, which was taken from [UCI Machine Learning Repository](#)

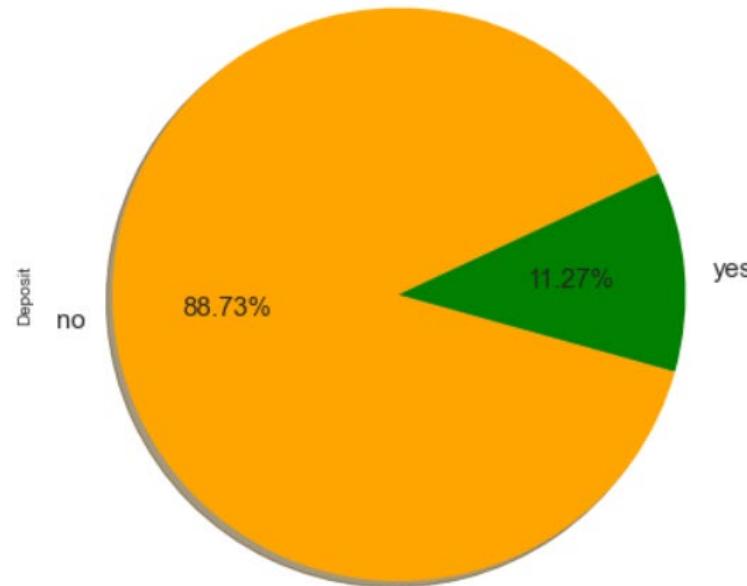
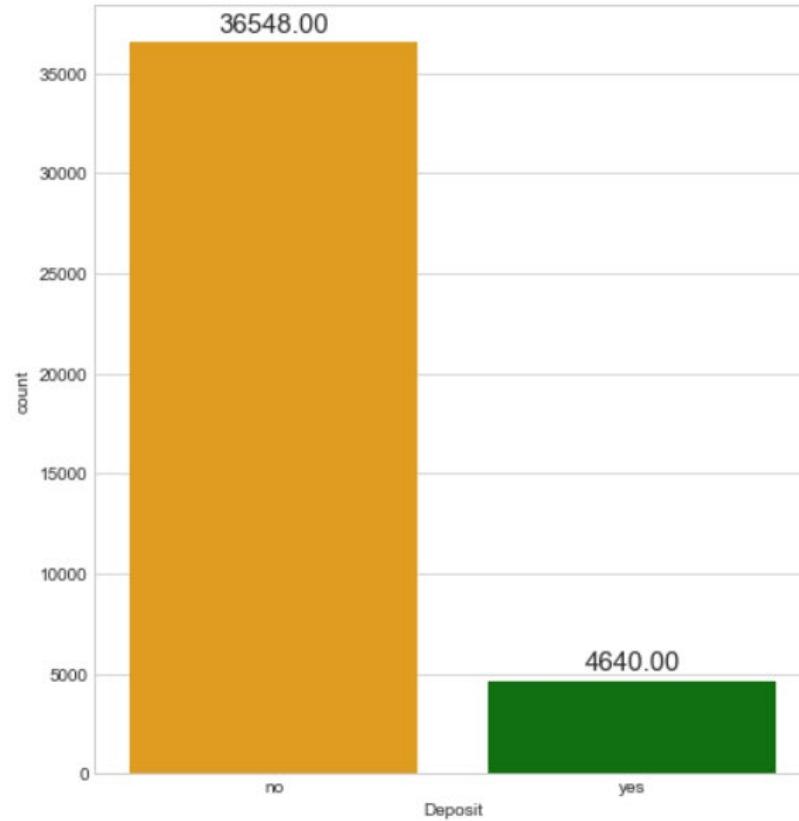
DATA QUALITY ASSESSMENT

	OVERVIEW	MISSING VALUE	DATA INCONSISTENCY	DATA REGROUP
DATASET	41,188 records 21 data fields	NONE	NONE	Education field
ACTION	N/A	N/A	N/A	Regroup “basic.4y”, “basic.6y”, “basic.9y” into a new category called “basic” under education field

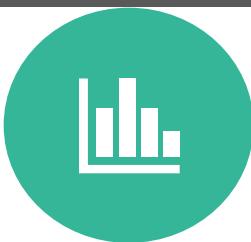
DATA EXPLORATION

- Number of people who did not have deposit subscription was prevalent within the dataset.
- The dominance of this population must be addressed in the analysis to improve prediction accuracy.

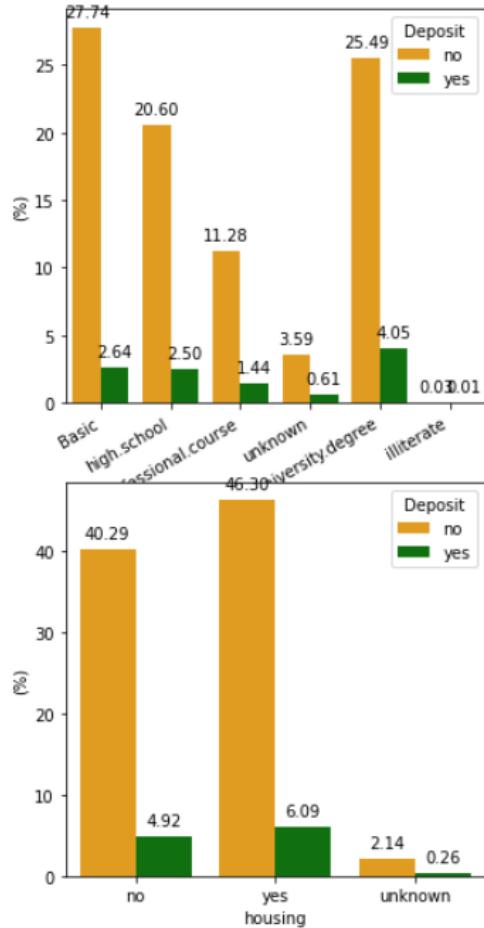
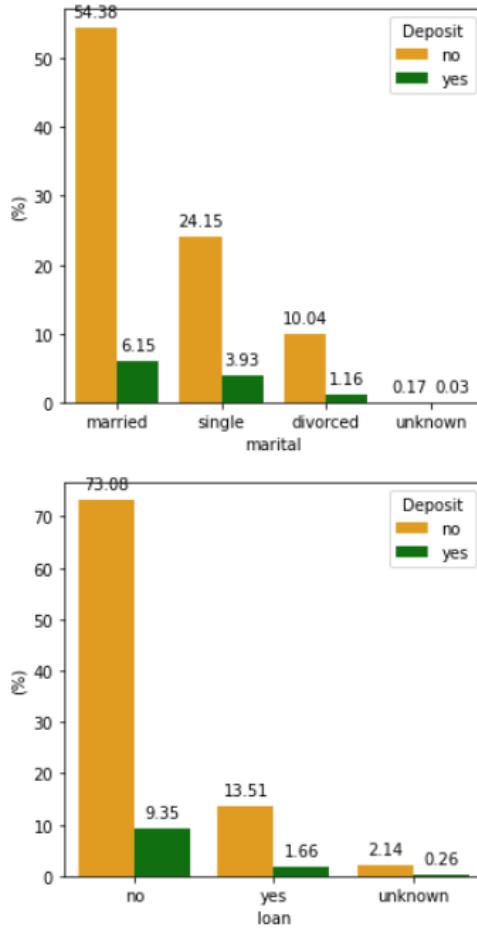
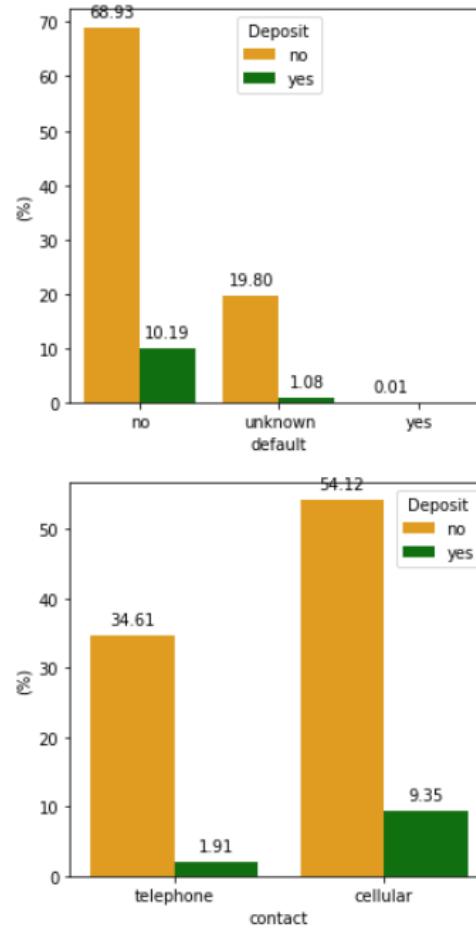
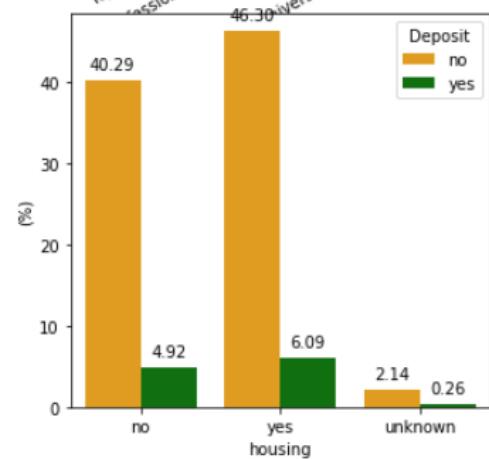
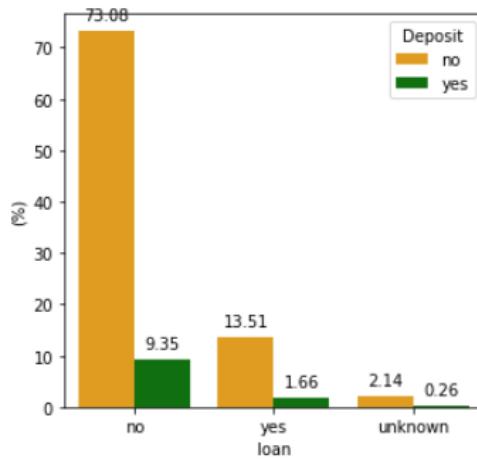
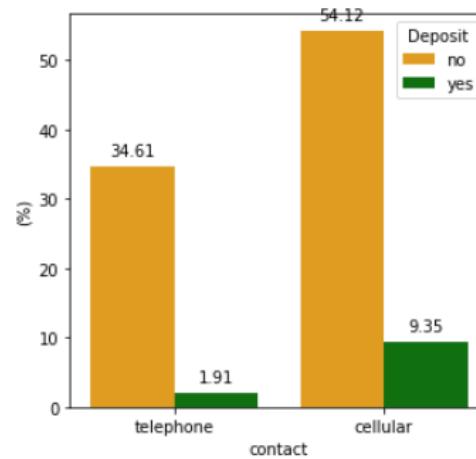
Overview of Subscription



DATA EXPLORATION



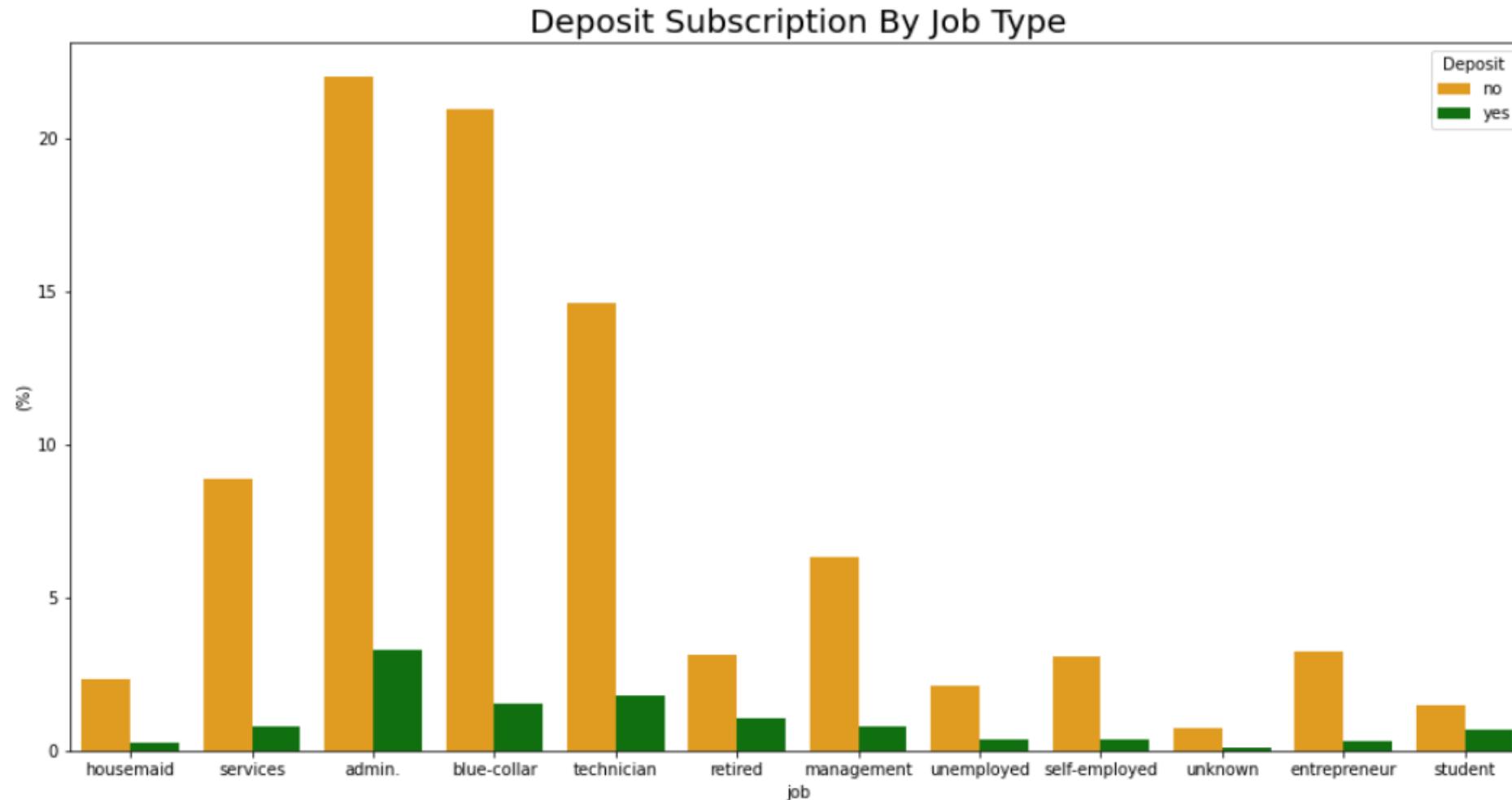
Proportion of Deposite Subscription By Each Categorical Variable



- ❑ Number of deposit subscription came from the majority of:
 - Individuals with university degree
 - Married individuals
 - Individuals without credit default
 - Individuals with a housing loan
 - Individuals without a personal loan
 - Individuals who had cellular
- As a result, these 6 categorical variables are good predictors for model development.

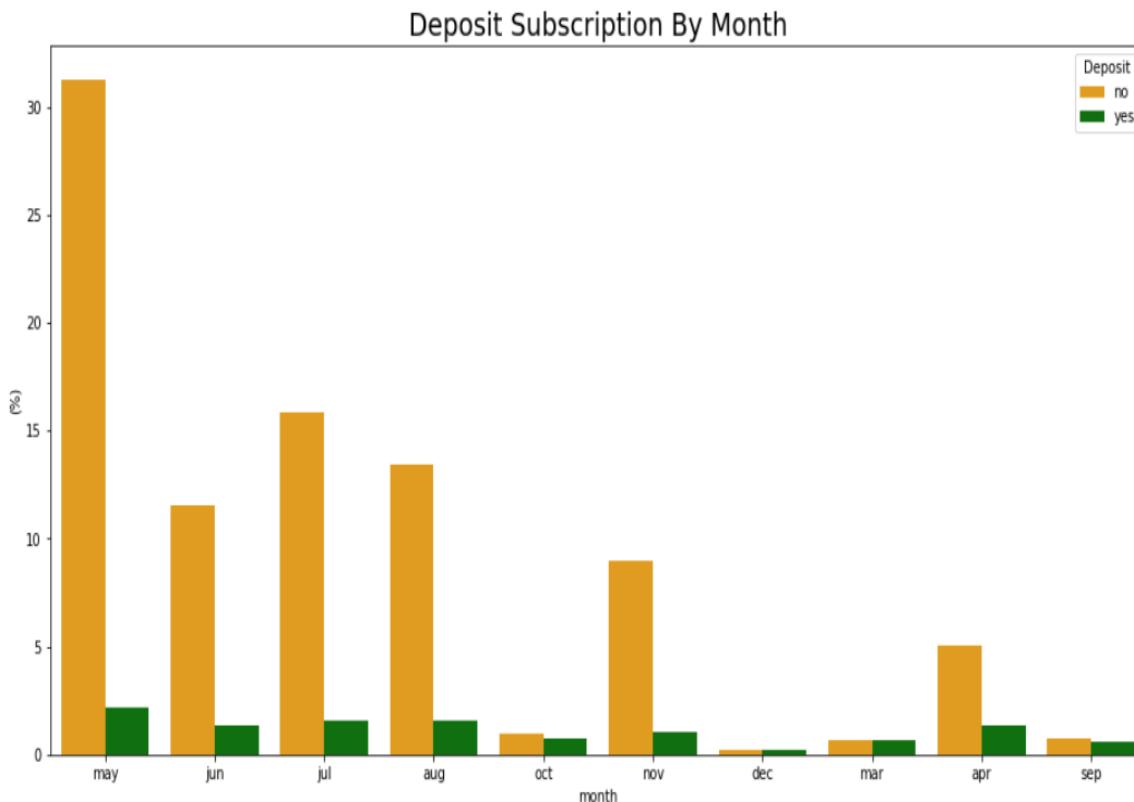
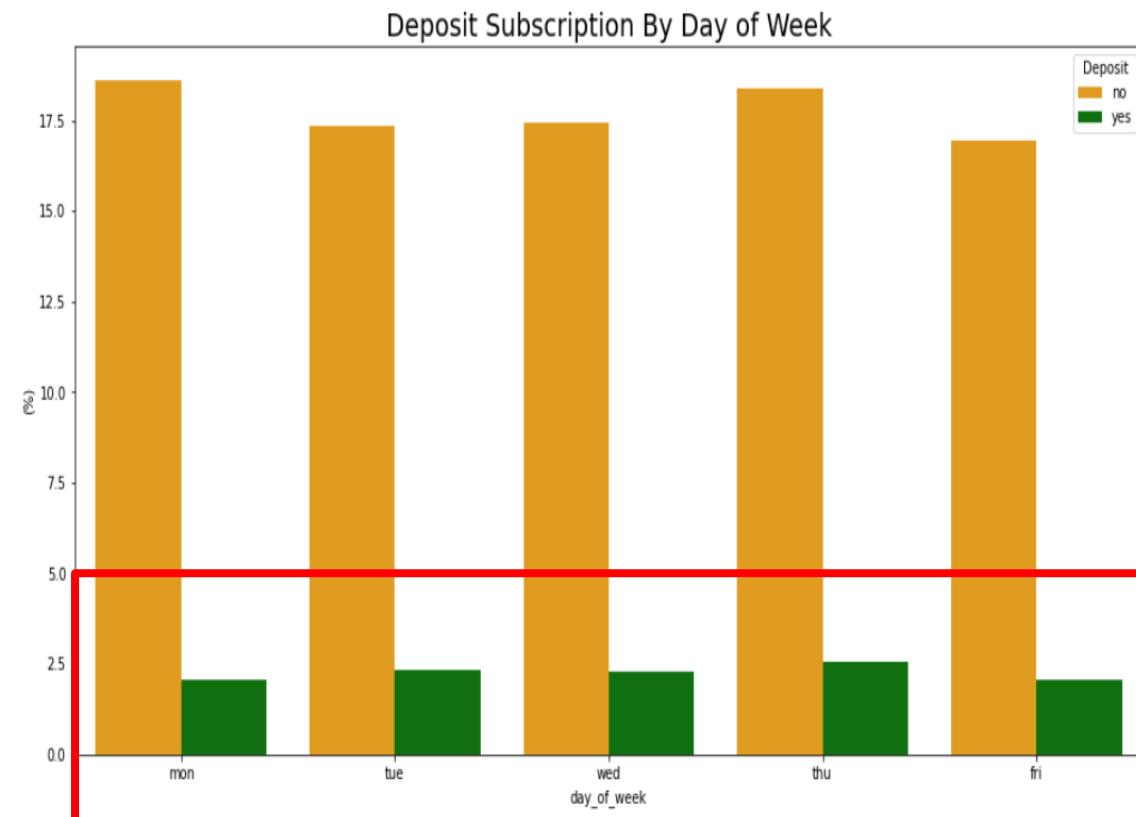
DATA EXPLORATION

- Blue-collar workers, technicians, and administrators were mainly the deposit subscription holders.
- Job type should be included as a feature in the prediction model.



DATA EXPLORATION

- Number of deposit subscriptions peaked in the month of April, May, June, July. However, number of deposit subscriptions were equally scattered across the day of week.
- Therefore, the prediction model would include “month” and exclude “day_of_week” variable.



DATA EXPLORATION

- Number of deposit subscriptions peaked for successful and non-existent result in previous marketing campaign. Therefore, “*poutcome*” was inferred as good predictor for the model.

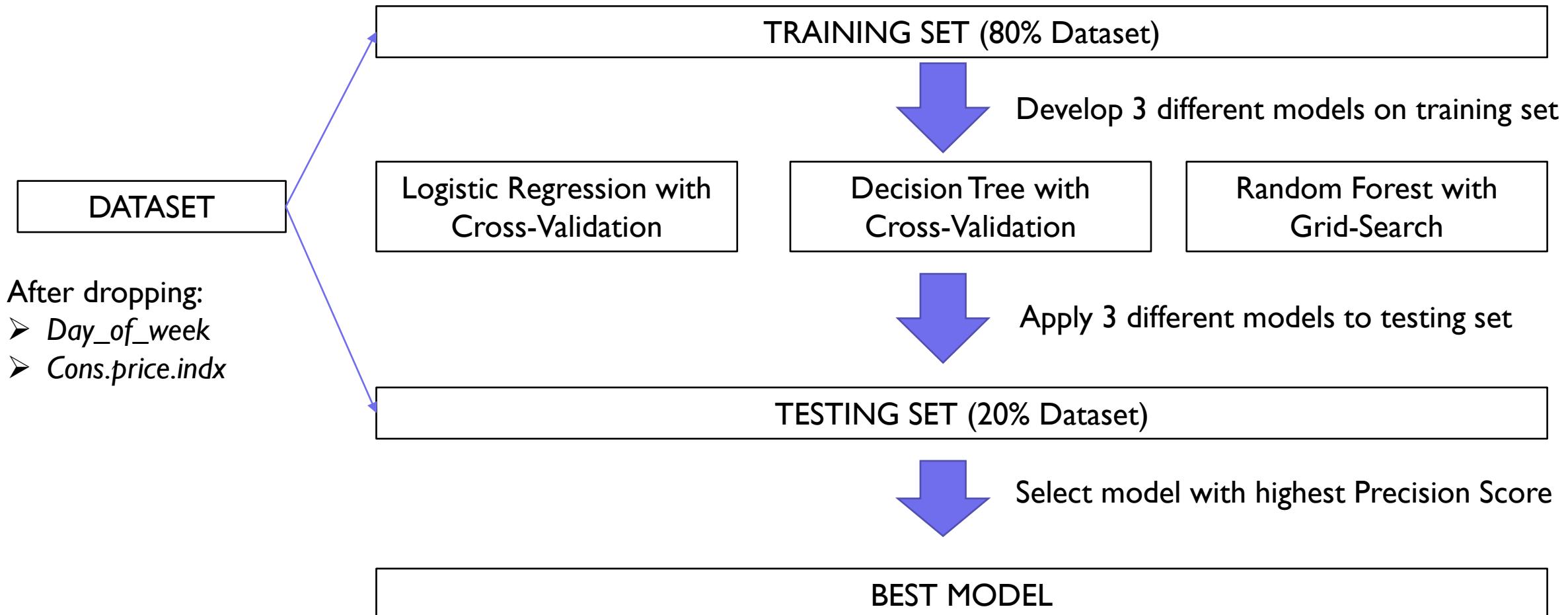


DATA EXPLORATION

- There was no significant difference between people who had deposit subscription vs. who did not.
- Therefore, this variable would be removed from the prediction model.

	age	duration	campaign	pdays	previous	emp.var.rate	cons.price.idx	cons.conf.idx	euribor3m	nr.employed
Deposit										
no	39.91	220.84	2.63	984.11	0.13	0.25	93.60	-40.59	3.81	5176.17
yes	40.91	553.19	2.05	792.04	0.49	-1.23	93.35	-39.79	2.12	5095.12

METHODOLOGY



MODEL SELECTION

- Out of 3 models, Decision Tree has slightly higher precision score than the others.
- As a result, Decision Tree is concluded to be the best prediction model to measure result of future direct marketing campaign.

Logistic Regression with
Cross-Validation

	precision	recall	f1-score	support
0	0.93	0.98	0.95	7319
1	0.66	0.37	0.48	919
accuracy			0.91	8238
macro avg	0.79	0.68	0.71	8238
weighted avg	0.90	0.91	0.90	8238

Decision Tree with
Cross-Validation

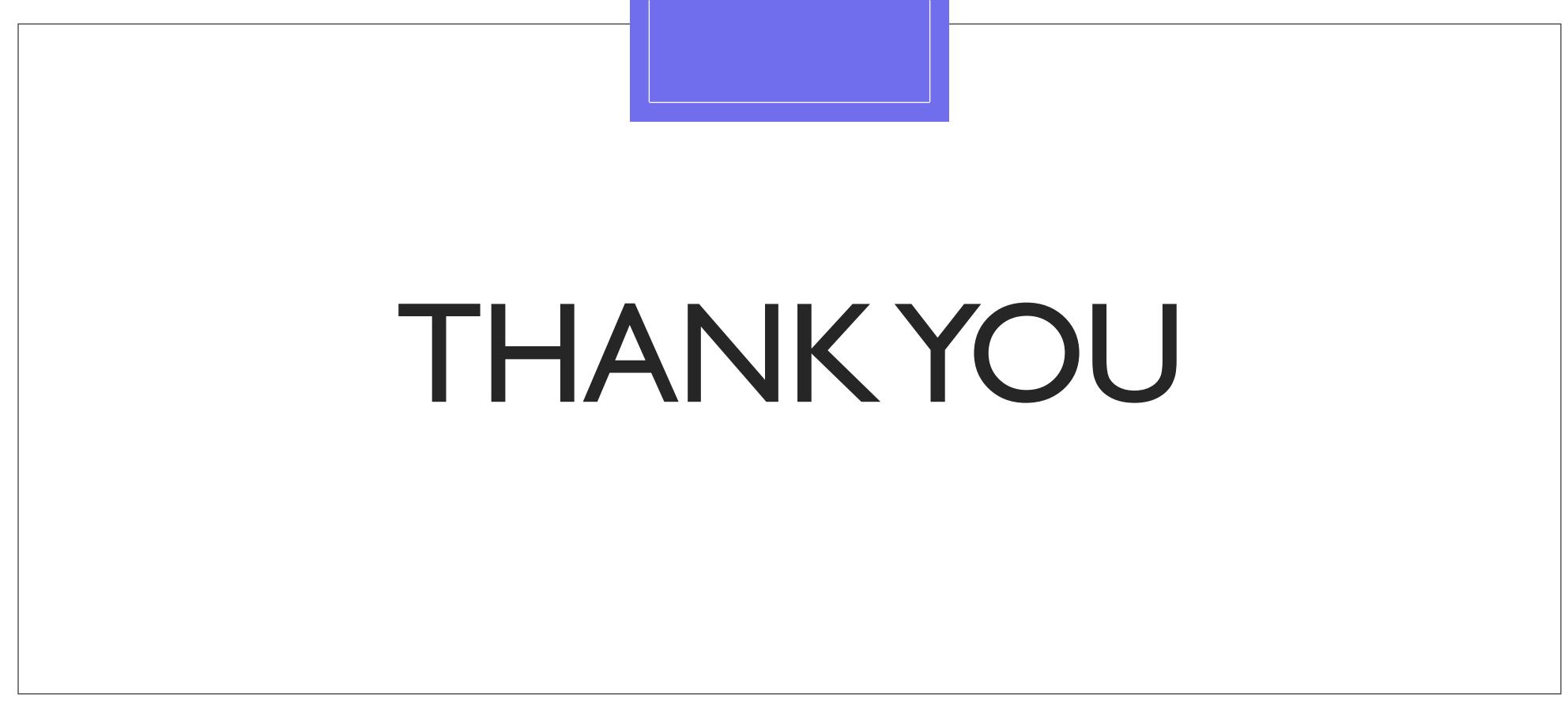
	precision	recall	f1-score	support
0	0.94	0.96	0.95	7319
1	0.60	0.55	0.57	919
accuracy			0.91	8238
macro avg	0.77	0.75	0.76	8238
weighted avg	0.91	0.91	0.91	8238

Random Forest with
Grid-Search

	precision	recall	f1-score	support
0	0.90	1.00	0.95	7319
1	0.80	0.16	0.26	919
accuracy			0.90	8238
macro avg	0.85	0.58	0.60	8238
weighted avg	0.89	0.90	0.87	8238

Note: Precision Score = % of predicted deposit subscriptions relative to all direct marketing efforts.

Higher “Precision Score” means higher ROI on ad spend



THANK YOU

APPENDIX – PYTHON CODE

```
### LOGISTIC REGRESSION WITH CROSS VALIDATION
k_fold = KFold(n_splits = 10, random_state = 0)
lgt = LogisticRegressionCV(cv=k_fold,scoring='precision')
lgt_y_pred = lgt.fit(x_train,y_train).predict(x_test)
lgt_precision = precision_score(y_test, lgt_y_pred,average='weighted')
print(round(lgt_precision,3))
print(classification_report(y_test, lgt_y_pred))
```

```
### DECISION TREE MODEL WITH CROSS VALIDATION
# Iteration over various tree depths to identify the best precision score

for max_depth_val in [2,3,5,6,7,10,12]:
    k_fold = KFold(n_splits = 10, random_state = 0)
    clf = DecisionTreeClassifier(max_depth = max_depth_val)
    print("Evaluating Decision Tree for max_depth = %s" %(max_depth_val))
    y_pred = clf.fit(x_train, y_train).predict(x_test)

    # Calculate precision for cross validation and test
    cv_precision = cross_val_score(
        clf, x_train, y_train, cv = k_fold, scoring = 'precision_weighted')
    precision = precision_score(y_test, y_pred, average = 'weighted')
    print("Cross validation Precision: %s" %(cv_precision))
    print("Test Precision: %s" %(round(precision,4)))

# Best Decision Tree with Max Dep = 6
k_fold = KFold(n_splits = 10, random_state = 0)
dt = DecisionTreeClassifier(max_depth = max_depth_val)
dt_y_pred = dt.fit(x_train,y_train).predict(x_test)
precision_dt = precision_score(y_test,dt_y_pred, average = 'weighted')
print(precision_dt)
print(classification_report(y_test, dt_y_pred))
```

```
### RANDOM FOREST MODEL WITH HYPERPARAMETER TUNING
# Create list of hyperparameters
n_estimators = [2, 80]
max_depth = [2, 100]
param_grid = {'n_estimators': n_estimators, 'max_depth': max_depth}

# Use Grid search CV to find best parameters
print("starting RF grid search.. ")
k_fold = KFold(n_splits = 10, random_state = 0)
rf = RandomForestClassifier()
rf_grid = GridSearchCV(estimator = rf, param_grid = param_grid, scoring = 'precision',cv=k_fold)
rf_grid.fit(x_train, y_train)
rf_y_pred = rf_grid.predict(x_test)
rf_precision = precision_score(y_test, rf_y_pred, average="weighted")
print(rf_precision)
print(classification_report(y_test, rf_y_pred))
```